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Review

Mesenchymal Stem Cells: Cell-Based Reconstructive Therapy
in Orthopedics

ARNOLD I. CAPLAN, Ph.D.

ABSTRACT

Adult stem cells provide replacement and repair descendants for normal turnover or injured tis-
sues. These cells have been isolated and expanded in culture, and their use for therapeutic strate-
gies requires technologies not yet perfected. In the 1970s, the embryonic chick limb bud mesenchy-
mal cell culture system provided data on the differentiation of cartilage, bone, and muscle. In the
1980s, we used this limb bud cell system as an assay for the purification of inductive factors in bone.
In the 1990s, we used the expertise gained with embryonic mesenchymal progenitor cells in culture
to develop the technology for isolating, expanding, and preserving the stem cell capacity of adult
bone marrow-derived mesenchymal stem cells (MSCs). The 1990s brought us into the new field of
tissue engineering, where we used MSCs with site-specific delivery vehicles to repair cartilage, bone,
tendon, marrow stroma, muscle, and other connective tissues. In the beginning of the 21st century,
we have made substantial advances: the most important is the development of a cell-coating tech-
nology, called painting, that allows us to introduce informational proteins to the outer surface of
cells. These paints can serve as targeting addresses to specifically dock MSCs or other reparative
cells to unique tissue addresses. The scientific and clinical challenge remains: to perfect cell-based
tissue-engineering protocols to utilize the body’s own rejuvenation capabilities by managing surgi-
cal implantations of scaffolds, bioactive factors, and reparative cells to regenerate damaged or dis-
eased skeletal tissues.

INTRODUCTION

IN ADULTS, all the skeletal tissues constantly rejuvenate
themselves. This process involves the death of end-
stage differentiated cells such as osteoblasts, that is, bone-
forming cells, and their replacement by newly differen-
tiated osteoblasts. The new osteoblasts arise in a complex,
multistep sequence, called a lineage, from multipotent
progenitor cells called mesenchymal stem cells, MSCs,
found in bone marrow and other sites.!> The MSCs have

the capacity to differentiate into other phenotypes in-
cluding those that fabricate cartilage, muscle, marrow
stroma, tendon/ligament, fat, and other connective tissues
(Fig. 1). Thus, adult MSCs in vivo function to supply re-
placement units for the differentiated cells that naturally
expire or succumb to injury or disease. This process of
stem cell-generated replacement cells decreases with age
after reaching its peak in the mid to late 20s in humans.
Therefore, past the age of 30 years, supplementation and
management of the innate cell-mediated rejuvenation ca-
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FIG. 1. The mesengenic process. Mesenchymal stem cells (MSCs) have the capacity to differentiate into bone, cartilage, mus-

cle, marrow stroma, tendon/ligament, fat, and other connective tissues.!"> The sequence of this differentiation involves multistep
lineages controlled by growth factors and cytokines. This figure is structured in a manner comparable to hematopoietic lineage
progression and involves well-described lineages for osteogenic differentiation® with decreasing information available from left

to right.

pacity will enhance skeletal tissue performance and re-
pair.?

The cure for many genetic diseases that affect skele-
tal tissues could be “cell replacement therapy,” whereby
the host stem cells are replaced by donor cells that do not
carry the genetic defect. For example, in the case of os-
teogenesis imperfecta (OI), host osteoblasts carry a gene
lesion in type I collagen. When osteoblasts fabricate the
matrix of bone, the type I collagen-rich osteoid is defec-
tive and the resulting mineral deposition is likewise de-
fective. The end result is bone stock that is brittle and
that fractures at a fraction of the maximum load tolerated
by normal bone. If the host MSCs, the source of all os-
teoblasts, are replaced with genetically normal donor al-
logeneic MSCs, the newly formed donor-derived os-
teoblasts will make normal bone stock that naturally
replaces the defective stock.* Indeed, successful short-
term amelioration of OI has been reported by introduc-
ing allogeneic MSCs into young, growing OI patients.>¢

It follows that the control of MSC number, location,
differentiation potential, and rate of differentiation can
affect skeletal tissues, their growth and physical proper-
ties, and their maintenance and repair capacities. For ex-
ample, the rate of fracture repair is directly controlled by

the rate of fracture callus formation and differentiation;
the callus is made up of MSCs and blood vessels. In me-
chanically unstable breaks, the lack of vasculature causes
the bulk of the MSCs to develop into bridging cartilage
that eventually spans the defect and then is further sta-
bilized by a surrounding bony bridge.

I outline below how we have developed cell-based and
tissue-engineering therapies for skeletal tissues by using
MSCs. Because MSCs are present at concentrations of
less than 1 in 100,000-500,000 nucleated cells in bone
marrow aspirates from adults, the MSCs must be culture
expanded to obtain sufficient numbers for clinical use.

The evolution of MSC technology at Case Western Re-
serve University (Cleveland, OH) and its development
into clinical protocols is the focus of this review. The cur-
rent deficits of this technology provide the goals for fu-
ture technology. In this regard, perhaps the subtitle for
this review should be Yesterday, Today, and Tomorrow.

YESTERDAY

In the 1970s, my laboratory reported our studies on the
disassociation of embryonic stage 24 chick limb bud mes-
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enchymal progenitor cells and their subsequent differen-
tiation into bone, cartilage, muscle, and other mesenchy-
mal tissues’~? (Fig. 2). In the early 1980s, we used these
embryonic chick limb bud cells in culture as an assay to
purify bioactive molecules from demineralized bone ma-
trix.!%-14 Cultures were seeded at sufficiently low den-
sity that they did not differentiate into cartilage. Extracts
of demineralized bone were exposed to these cultures and
this exposure induced chondrogenic differentiation in a
dose-dependent manner (Fig. 3A). Schemes to purify the
crude extract of such demineralized bone established that
the “chondrogenic stimulating activity” (CSA) was a 31-
kDa protein on sodium dodecyl sulfate (SDS)—polyacry-
lamide gel electrophoresis displays (Fig. 3B) that we now
know was a heterodimer of bone morphogenetic proteins
(BMPs).

The BMPs were cloned in the late 1980s'> and because
of our studies and assays for CSA, I suspected that stem
cells comparable to the embryonic chick limb bud mes-
enchymal cells must reside in adult tissues. This view
was principally based on the many studies by Marshall
Urist showing that when demineralized bone or extracts
from it were implanted into subcutaneous or intramus-
cular sites, they caused cartilage and bone formation.'%-1°

Furthermore, two important additional facts were
known in the mid-1980s. First, orthopedic surgeons rou-
tinely used freshly isolated bone marrow to provide rapid
and extensive repair of large bone defects or for spinal
fusions.?? This implied that marrow contained reparative
or osteogenic cells that contributed to these mesenchy-
mal repair sites. Second, the work of Friedenstein?!-22
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and, in particular, of Owen?3-?* indicated that cells iso-
lated and adhered to petri dishes from marrow had os-
teogenic and adipogenic potential. On the basis of these
experiences and facts, Stephen Haynesworth and I de-
veloped the technology for isolating and culture expand-
ing adult marrow-derived MSCs.?>-30

MSC Technology

In standardizing the embryonic chick limb bud mes-
enchymal progenitor cell culture system, we routinely
screened many separate batches of fetal bovine serum
(FBS) for its ability to enhance cell attachment and pro-
liferation and to support density-dependent differentia-
tion of cartilage, bone, and muscle.3! This screening was
started in the 1970s when large differences could be seen
between individual batches of FBS. In fact, by merely
lining up the ten to fifteen 100-mL bottles of different
batches of FBS, we could eliminate half of them because
we knew that those that had a green hue (hemolysis)
would not be suitable for the limb bud cells. Today, un-
fortunately, large batches of FBS are blended together
and greater care is taken in their production that they all
look the same.

Thus, when Stephen Haynesworth and I set forth to
purify and culture expand human (h) MSCs from fresh
bone marrow, we had prescreened batches of FBS that
were suitable for embryonic mesenchymal progenitor
cells. As this technology evolved, we eventually gained
enough experience with hMSCs to develop assays spe-
cific to these progenitor cells and, thus, stopped using the
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FIG. 2. Stage 24 chick limb bud mesenchymal cell cultures exhibit muscle, bone, and cartilage phenotypes depending on the
original plating density in 60-mm petri dishes. The chick limb bud cells are liberated in a trypsin disassociation step after their
dissection from the embryos. The cells are plated, and a sequence of differentiation into these phenotypes has been described.!-’*
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FIG. 3. Chondrogenic stimulating activity (CSA) has been
purified by using the embryonic chick limb bud mesenchymal
cell culture assay.'>!3 Pictured are petri dishes that have been
plated at 2 million cells per 60-mm dish; little chondrogenesis
could be expected except at the edges of the control plate as
seen in (A) on the right. Cultures treated with CSA extracts
show a dramatic upregulation of chondrogenesis in these tolu-
idine blue-stained dishes. Pictured in (B) is an SDS—polyacry-
lamide gel molecular weight standards, total extract profile, par-
tially pure preparation, and purified CSA preparation at 31,000
Da, respectively, from left to right.

embryonic chick cells in our serum screen. The current
technology selects suitable batches of serum on the ba-
sis of hMSC colony counts, cell proliferation (numbers
of cells at each passage), and in vitro and in vivo assays
for osteogenesis and chondrogenesis.3!

The historic and current “gold standard” assay for all
MSC preparations is to place the cells onto the pore walls
of fibronectin-coated porous calcium phosphate ceram-
ics and, after a brief in vitro incubation at 37°C to allow
the cells to attach, the cell-ceramic composite is placed
in a subcutaneous pocket of immunocompromised rodent
or autologous host3?-3* (Fig. 4). These implantation sites
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are highly vascular and the quantitative estimation of
bone (Fig. 5) and/or cartilage in the pores is taken as an
indication of the quality of the MSC preparation. By test-
ing 10 to 15 different batches of serum with MSCs from
the same donor, the effects of these different serums can
be directly compared. Again, currently 1 in 20 or 30
batches of FBS is suitable for hMSCs. It must be firmly
stated that the batch of serum suitable for hMSCs is not
suitable for rat, rabbit, or mouse marrow-derived MSCs.
Because we use a variety of experimental animal pre-
clinical models, we must screen serum batches for the
MSCs of each animal, for suitability to support selective
attachment to culture dishes and for proliferation with the
maintenance of the stem cell properties. More trouble-
some, with each newly purchased batch of FBS for one
species-specific MSC preparation, we expect slight dif-
ferences in the ability of the MSCs to divide or differ-
entiate. On top of this serum species specificity, every
donor or MSC preparation varies even from inbred
species. For hMSCs, we have published that the consti-
tutive secretion into the medium of cytokines and growth
factors is quantitatively different although the percent in-
crease due to growth factor stimulation is relatively uni-
form from donor to donor.3?

Because both whole marrow and purified and ex-
panded MSCs make bone in the calcium phosphate
porous ceramics in these in vivo incubation sites,>® these
cell delivery vehicle composites have been used in ro-
dent and canine preclinical models for massive bone re-
pair.37~*3 The choice of these calcium phosphate ceramic
vehicles is based on their osteoconductive properties, but
in addition, these materials support the induction of os-
teogenesis of MSCs; whether this is due to direct inter-
action of MSCs with the calcium phosphate surfaces or
the binding of specific growth factors to the surface has
not been determined. In addition, the MSCs bound to ce-
ramic vehicles can be superinduced in vitro to enter the
osteogenic lineage before implantation.3® Thus, MSC-
mediated osteogenesis can be jump-started in culture be-
fore clinically relevant implantation. MSCs produce bone
in the pores of the ceramic faster than is seen with whole
marrow, and the jump-started MSCs produce bone faster
than uninduced MSCs. These features may be important
in bone repair or implant fixation protocols in older pa-
tients, whose MSC titers are much lower than in young
individuals.?

It is important to stress that we have developed in vitro
assays for MSCs to differentiate into osteoblasts,**
chondrocytes,*>#¢ adipocytes, hematopoietic support*’+3
(both hematopoietic stem cells and monocyte-macro-
phage development into osteoclasts), and myoblasts.*
These in vitro assays serve as vehicles for studying the
control of the pathways of differentiation from MSCs,
but they also serve as the starting point for the tissue-
engineering strategies of today.
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FIG. 4. Whole marrow or dissected periosteum can provide progenitor cells or MSCs. When passaged, the liberated cells can
be loaded into fibronectin-coated porous calcium phosphate ceramic 3-mm cubes and implanted subcutaneously in immunoun-

reactive or syngeneic animals3!-33-3436

TODAY

Cell-based clinical therapies using MSCs involve at
least three different approaches: First, tissue-engineering
strategies in which MSCs are incorporated into three-di-
mensional (3-D) scaffolds for the replacement of 3-D
pieces of in vivo tissues; second, cell replacement ther-
apy, in which genetic defects can be cured by replacing

the mutant host cells with normal allogeneic donor cells;
and third, where MSCs act as cytokine/growth factor
pumps to stimulate reparative events or to inhibit degen-
erative events.

Tissue engineering

We have published studies on the tissue-engineered
repair/regeneration of cartilage,’*-7 bone,3*~*3 and ten-

FIG. 5. Calcium phosphate porous ceramic cubes that are implanted in syngeneic or immunounreactive rodents are harvested
at 3 or 6 weeks and yield specimens that exhibit bone and cartilage when examined in paraffin sections.?>-3* Shown in a decal-
cified cube section in which the dark-staining, newly formed bone (B) is being laid down by a layer of osteoblasts (OB) with

vasculature at their backs. C, decalcified ceramic residue.
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don.37->8 Each site requires a different 3-D scaffold and
a different logic. I emphasize cartilage here because the
cell delivery vehicle itself provides cueing both on the
initial exposure of the cells and also during the process
of tissue filling.>® The breakdown of the delivery vehi-
cle triggers the final phases of tissue change and the
breakdown products add value to the molecular and cel-
lular events related to successful repair.

The important common tissue-engineering issues for
all mesenchymally derived tissues with regard to the de-
livery of MSCs and their appropriate and sequential
changes are as follows: the scaffold must

1. Allow for and encourage cell attachment

2. Be porous so the differentiated cells can make abun-
dant and specialized extracellular matrix

3. Allow bioactive molecules to have access to the
cells

4. Perfectly integrate into the neotissue or silently dis-
appear

5. Provide some cellular cueing

6. Be mechanically sensitive to the site

Cartilage repair. For cartilage repair, we used a fi-
bronectin-coated sponge formed from hyaluronan (HA)
(Fig. 6). With embryonic chick limb bud mesenchymal
cells, we showed that high molecular weight HA bonded
to the petri dish was chondroinductive.®%¢! Moreover,
high molecular weight HA is antiangiogenic. In addition,
in porous calcium phosphate ceramic vehicles in subcu-
taneous sites, MSCs in vascular-excluded pores form car-
tilage. Thus, MSCs in porous HA sponges provide an
avascular and chondroinductive microenvironment. In
deep, critical-sized osteochondral defects made in the me-
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dial femoral condyle of adult rabbits (Fig. 6), sponges of
HA filled with MSCs (Fig. 7) uniformly differentiate into
chondrocytes. When the HA of the scaffold is degraded
into oligomers, the oligomers trigger the entrance of vas-
culature into the hypertrophic cartilage at the base of the
defect that is followed by replacement by vascularized
bone. The cartilage at the top of the defect not only does
not undergo replacement, but, more striking, integrates
the neocartilage with the host cartilage. We suggest that
the HA oligomers facilitate this tissue integration.>%->7
Thus, the 3-D HA delivery vehicle meets all the criteria
listed above for a successful tissue-engineering scaffold.

Tendon repair. For tendon repair, the same cells,
MSC:s, that form cartilage or bone were formatted into a
type I collagen gel that formed in a trough around a re-
sorbable suture, the ends of which were fastened to a
spring that keep the suture under constant load (Fig. 8).
The MSCs contracted the gel and because the suture was
loaded, cells oriented with regard to the suture.3’® The
partially contracted cell-gel-suture composite was su-
tured into and aligned with the load axis within an
Achilles tendon defect in adult rabbits. At 3 months, the
neotissue formed was well-integrated tendon tissue.
Again, the tissue and site required a specific delivery ve-
hicle to take advantage of the mechanical and chemical
microenvironment necessary for the MSCs to develop
into functional tenocytes.37-58

Cell Replacement Therapy

The bone marrow is a highly differentiated and com-
plex, multicomponent tissue. The major component is the
marrow stroma, which is a multicompartment connective

MSCs
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FIG. 6. Cartilage repair protocol in which sponges are coated with fibronectin and left to dry overnight. These sponges are
filled with either freshly isolated whole bone marrow, liberated culture-expanded MSCs, or left empty as they are placed into

full thickness defects in adult rabbit condyles. 0-3234-36
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FIG.7. ACP (auto-cross-linked polysaccharide) and Hyaft-11 sponges are pictured in scanning electron micrographs after coat-
ing the pores of these sponges with mesenchymal stem cell preparations from rabbit.>*>> Original magnification: X 100.

tissue that houses and supports hematopoiesis. This sup-
port involves establishing niches that physically house
specific arms of the multilineage hematopoietic pathway;
both “floor space” and a specific microenvironment of
cytokines are provided by the marrow stroma and its stro-
mal cells. Thus, after chemotherapy or radiation, which

destroys the hematopoietic progenitors and these path-
ways, these niches must be reestablished to facilitate he-
matopoietic engraftment and the production of various
blood cells. The other major components of marrow are
blood vessels, osteoprogenitor cells, and MSCs. Thus, we
developed clinical protocols to establish that autologous

[ |

ACL Repair

/

Resorbable Suture g MSCs in Vehicle /

]

MSCs

Tendon Repair

FIG. 8. Ligament/tendon repair is organized by taking a resorbable suture, which is held by a spring under fixed load in a
trough that serves to house a collagen gel in which MSCs have been placed. This gel forms in the trough around the resorbable
suture and the MSCs contract the gel around this loaded suture. This composite gel-cell-suture is then sutured into place into

achilles tendon defects created in adult rabbits.37->8
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MSCs could be safely and efficaciously delivered back
to patients to reestablish this delicate marrow microen-
vironment.62:63

Cell replacement therapy involves eliminating cells
with specific genetic defects or mutations and replacing
them with allogeneic normal cells or gene therapy-trans-
fected cells® (Fig. 9). For the genetic disease osteogen-
esis imperfecta (OI), there is usually a point mutation in
the type I collagen gene. The type I collagen produced
by osteoblasts is defective and, thus, the osteoid and sub-
sequent mineral deposition are likewise defective. The
resulting bone stock is brittle and multiple fractures oc-
cur because these bones cannot withstand normal loads.
To cure OI, it would be theoretically possible to use al-
logeneic MSCs from an immunomatched donor* and to
destroy some (or preferably all) of the host MSCs and
replace them with donor (nonmutant) MSCs (Fig. 9). In-
deed, this has been tried with children with OI in a
two-step procedure.>® The first step was to do a classic
allotransplantation in which whole bone marrow from
immunomatched donors was provided after mild chemo-
therapy. The result was to provide some allotolerance by
engraftment of allohematopoietic stem cells and some
allo-MSCs. Subsequently, after 18 to 32 months, the chil-
dren were intravenously given isolated, culture-expanded
allo-MSCs matching their original allograft.> Most of the
children experienced rather substantial increases in skele-
tal growth. In my view, these therapies were not totally
curative because I suspect, on the basis of labeling and
imaging studies,® that the engraftment of allo-MSCs was
low. As addressed below, we must find ways to improve
MSC engraftment efficiency to ensure that these cell re-
placement therapies can provide cures.
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Experimentally, we have also tried to cure muscular
dystrophy in mice by providing MSCs that do not have
the disease-causing mutation.*>°® A mouse strain called
mdx has a point mutation in the muscle-specific protein
dystrophin (Fig. 10). Using an antibody against dys-
trophin, we can show that muscle sections are negative
for dystrophin.®® In muscles injected with congenic, nor-
mal MSCs, dystrophin-positive myotubes can be seen.
The injected MSCs differentiate into myoblasts®® and
fuse with the mutant myotubes and the incorporated nu-
clei produce normal dystrophin. Control fibroblasts do
not show this effect. Again, the limiting factor involves
getting enough normal MSCs to the muscles of the mdx
mouse to effect a cure; injecting every muscle in the body
is neither feasible nor prudent.

MSCs as Cytokine/Growth Factor Pumps

In two very different, but in some ways similar, ani-
mal models, MSCs have been introduced into infarct
(ischemia) lesions in the heart®’-79 and brain”!72 (stroke
model). The MSCs do not act by differentiating into car-
diac myocytes or neural elements, respectively, as shown
by cell-marking experiments, but rather secrete mole-
cules that increase angiogenesis and decrease scarring or
fibrosis. There is no doubt that in the cardiac infarct
model (rats and pigs) there is substantial cell death of
muscle tissue. However, the contractility and flexibility
of the tissue are not compromised and, thus, the heart
output is not grossly affected.®’-70 In the case of brain,
endogenous neural progenitors respond, migrating and
functionally repairing neurological damage so that in
functional tests, the animals clearly function.”!-”? In both

Marrow
MSC _
T + Retrovirus
E [TITTT] (gene A)
<——or Allograft
Home | BT
Intravenous Irradiation /
Chemotherapy

FIG. 9. Allo- or autologous gene therapy. Mesenchymal stem cells can be transfected with retrovirus to house normal genes
or allograft preparations can be presented to patients undergoing bone marrow transplantation. Mesenchymal stem cells intro-

duced in this way will home to bone marrow and have the potential to correct gene defects.

4,62,63
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FIG. 10. Congenic bone marrow has been harvested and the MSCs purified. These MSCs have been injected into a specific
muscle of the mdx mouse on the left side of the animal; on the right side, saline controls were injected. After 8 weeks, individ-
ual muscles were harvested, sectioned, and exposed to antibodies for dystrophin. MSC-injected muscles exhibited dystrophin-
positive myotubes, which indicated that the injected MSCs differentiated into myoblasts that fused with the host myotubes. The
newly fused nuclei, which are normal, produced dystrophin in the myotube and cured the genetic defect in these mice.®®

of these ischemia models for heart and brain, the pre- Kkine secretory activity alone, just as they provide such
dominant mechanism for the improved functional out- cytokine support of hematopoiesis in bone marrow.
comes are the MSC-caused inhibition of fibrosis or scar

formation and the increase in vascular elements (angio-

genesis). We have reported that human MSCs, as they TOMORROW
enter the osteogenic versus stromal lineage, secrete a dis-
tinct set of cytokines constitutively.? Thus, I imagine Luis Solchaga and others in our group have made un-

that MSCs could exert therapeutic effects by this cyto- usual and significant gains in learning how to supplement

. any peptide, PAI NT

or antibody protein

Fe,
\h’. «— ProteinAorG PRIMER

palmitate anchor

FIG. 11. By using fusion proteins (paints) that have the Fc region of antibodies at one end of the molecule, tight complexes
can be assembled on protein A or protein G (primer) molecules, which are noncovalently anchored to cell membranes by palmitic
acid. This primer-painting technology forms the basis for cell-targeting strategies that are now being experimentally used.”*
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MSC growth medium (with selected batches of FBS) with
extra amounts of specific growth factors to enhance their
mitogenic activity and to enhance MSC differentiation
potency into specific phenotypes (our unpublished ob-
servations). It is premature to fully discuss this new ap-
proach here, but it is a “tomorrow” technology that will
profoundly affect MSC therapies by structuring their cul-
ture expansion to provide maximally efficient and spe-
cific differentiation.

In addition, we have been systematically trying to im-
prove MSC engraftment and tissue-targeting efficiency.®
We have adapted a cell-coating technology initially de-
scribed by Mark Tykocinski and colleagues originally at
our university,”? but now at the University of Pennsyl-
vania (Philadelphia, PA). This technology, which we
have called cell painting,’* involves attaching a coat of
“primer,” palmityl fatty acid to which we covalently link
the antibody-binding protein, protein G (Fig. 11). The
fatty acid quantitatively inserts into the plasma membrane
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of the cell with the protein G facing out. Protein G binds
tightly to the Fc region of antibodies. Thus, we apply a
coat of primer and then attach the paint (any antibody or
antibody mixture or fusion protein containing the cassette
for the Fc region of an antibody). We have shown that
the primer and paint do not affect the viability, mitotic
activity, or differentiation potential of MSCs or other
cells. In an in vitro test of the targeting ability of anti-
body-painted human cells, we created a cartilage defect
in an osteochondral plug from a rabbit knee (Fig. 12).
The antibodies were against epitopes in deep cartilage
matrix and did not bind to the top of cartilage. Not only
did the cells specifically bind to the deep cartilage layer
of the defect, but after a 2-week incubation in culture,
the painted human chondrocytes made human cartilage
matrix that started filling the rabbit defect’* (Fig. 12).
Thus, the challenge for us is to develop this targeting
technology so that painted reparative cells can be injected
directly into the joint space, where they will dock onto

FIG. 12. Human chondrocytes that have been painted with antibodies to type II collagen and glycosaminoglycan epitopes and
delivered in vitro to a defect in rabbit cartilage. The arrows in (B) indicate the human type II collagen-positive cartilage matrix
that is being laid down after 2 weeks of in vitro incubation. (A) Toluidine blue-stained section; and (B) human type II collagen

immunostaining.”*
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FIG. 13. Phage display library was injected intravenously into mice and individual organs were isolated. From these isolated
organs, the associated phage were grown and injected in two more rounds, and the same tissue was isolated. After the third round
of exposure the tissue-anchored phage were cloned and the DNA inserts were sequenced.”>7¢

damaged cartilage tissue and start to repair it. Because
cartilage is avascular and is in the closed synovial space,
it does not have access to reparative cells. By using a tar-
geting strategy, it may be possible to deliver repair cells
to the site of damage without opening the joint space: a
tomorrow technology.

Likewise, how can we enhance engraftment of MSCs
to bone marrow or to muscle to cure genetic diseases?
Again, the painting technology can be adapted. On the
basis of experiments of Ruoslahti and colleagues’>7¢
(Fig. 13), the identity of peptides (Fig. 14) from a phage
display library that bind specifically to certain tissues via
the vascular tree are known. These vascular and tissue-
specific peptide addresses have been shown also to be
present in humans’” (Fig. 14). Thus, a fusion protein of
tissue-specific (e.g., muscle or bone marrow) peptide
hooked to an Fc cassette will allow us to paint tissue-spe-
cific targeting molecules onto MSCs. The peptide region

Lung: CGFELETC
Bone Marrow: PWERSL, FMLRDR, SGLRQR

Muscle: AALNIA

PAINT=FUSION PROTEIN:Fc-aaaaaa

FIG. 14. From the experiments pictured in Fig. 13, targeting
addresses for the phage peptide inserts for lung, bone marrow,
and muscle have been obtained by sequencing phage clones as-
sociated with these tissues.”>7°

of the paint will bind with its docking site in the specific
tissue. By using noninvasive imaging techniques, we in-
tend to perfect this tomorrow technology in the near fu-
ture.

PROSPECTUS

My colleagues and I have followed a basic science
pathway that has led us from understanding the forma-
tive events in mesenchymal tissue development in the
limb to establishing basic science principles of tissue en-
gineering.”® Orthopedic surgeons have been engineering
complex tissue repair and replacement strategies for cen-
turies. In this regard, the dominant principles were me-
chanical and the implant materials were primary metals.
A new era of biologic orthopedics and orthobiologics en-
compasses new principles of cell and molecular thera-
pies. This new era requires complicated new procedures,
new materials, and new talents. The current cell-based,
tissue-engineering strategies will set the foundation for
learning how to manage the body’s intrinsic capacity to
repair and rejuvenate skeletal tissues. Ultimately, the ex-
pansion of cells outside the body must be replaced by
pharmaceutical strategies to bring the reparative cells to
the injury site, expand them and differentiate these cells
to fill the defect, and induce the neotissue to functionally
integrate into the host tissue. It is anticipated that the or-
thopedic surgeon will be required to transform from a
hardware expert into a “mesenchemist” to ensure that the
proper bioactive factor is placed in the proper location at
the correct time and in the optimal amount to facilitate
the body’s self-repair by controlling its intrinsic repair-
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regeneration capacity. In this regard, new industries must
evolve to provide new implant materials that provide
morphological boundaries, multiagent release character-
istics, and dynamic structural changes to facilitate the
proper mechanical and structural properties of the new
tissue. Just as power tools have changed orthopedists
from carpenters to cabinet makers, so will biologics trans-
form them into conductors of cellular symphonies.
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